

AU CENTRE FOR CIRCULAR BIOECONOMY -RESEARCH ON INCREASING PRODUCTION SYSTEM EFFICIENCY, REDUCING ENVIRONMENTAL AND CLIMATE IMPACTS, AND DEVELOPING NEW BUSINESS CASES WITHIN THE BIOECONOMY

WE ARE ON TRACK RECYCLING OF AGRICULTURAL BIO-RESOURCES - BUT THERE IS STILL A LOT TO DO

AU THEMATICAL CENTRES

New strategical interdisciplinary thematical centres within global challenge areas:



Integrated Materials Research Water Technology Digitization, big data, and data analytics iFood

iClimate

Arctic Research

CBIO IS ORGANISED AROUND 7 RESEARCH PILLARS

Production and manegement of agricultural biomass

Senior Reseacher Uffe Jørgensen Department of Agroecology

Environmental Credibility, Economic Feasibility and Social Acceptance

Professor Marianne Thomsen Department of Environmental Science

Utilization of biomass for food, Ingredients and high-value products

Associate Professor Trine Dalsgaard Department of Food Science

Production of marine biomasse

Senior Reseacher Annette Bruhn Department of Bioscience

Biorefining, conversion and recycling

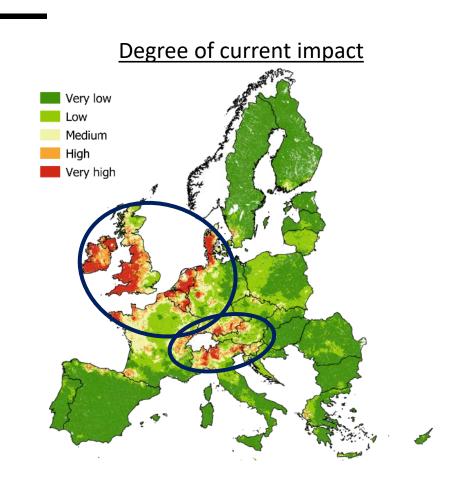
Senior Reseacher Lars Ottosen Department of Engineering

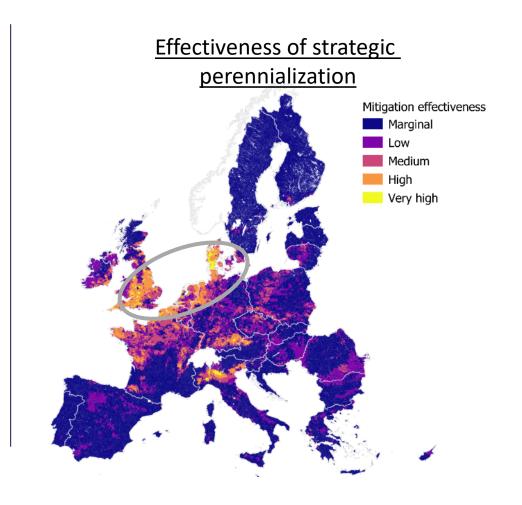
Feeds, by-products and feed ingredients

Senior Reseacher Søren Krogh Jensen Department of Animal Science

Biobased materials and bio-oils

Associate professor Marianne Glasius Department of Chemistry

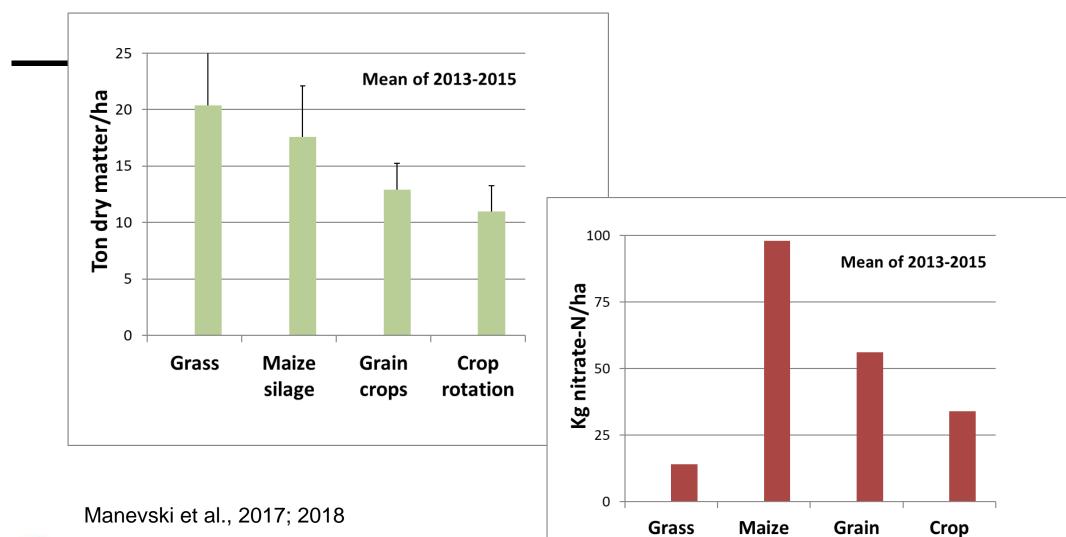

CBIO LIGHTHOUSES WITH MAJOR R&D FOCUS



THERE ARE STRONG DRIVERS FOR CHANGE IN AGRICULTURE - E.G. N-LOSSES TO WATER FROM AGRICULTURAL LAND (ENGLUND ET AL., 2019)

STRATEGIC PERENNIALIZATION **EXAMPLE**

FIELDS CAN LOOK THIS DIFFERENT IN AUTUMN - WE DECIDE



BIOMASS PRODUCTION CAN BE DOUBLED

and nitrate leaching halved

silage

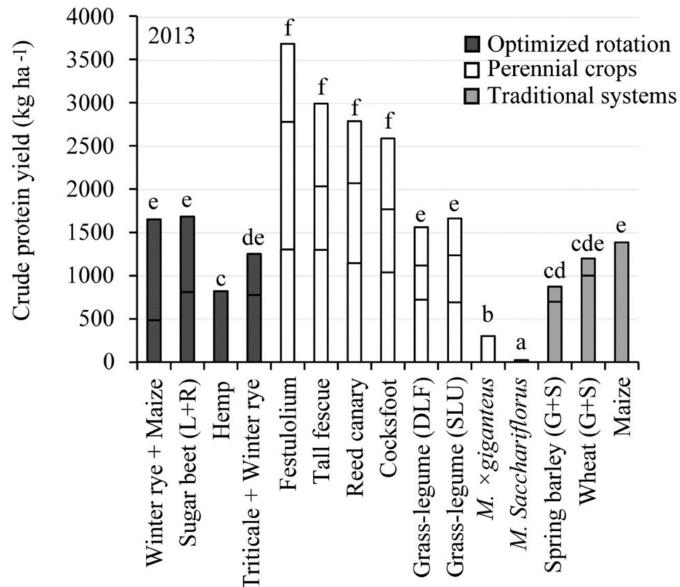
crops

rotation

OTHER ENVIRONMENTAL BENEFITS FROM CONVERSION OF ANNUAL CROPS TO GRASS

Reduced soil erosion

Reduced GHG emission (0.5-3.5 ton CO_2 -equiv/ha)


SO, WHAT TO DO WITH ALL THAT GRASS?

CRUDE PROTEIN YIELD HIGHER IN GRASSES THAN IN OTHER CROPS

Colours A radical new crop production paradigm can be un-locked by green **Flavors** Medicin biorefineries Other chemicals High-value components Oil Harvest Fuels Pretreatm. **Bio-refinery** Syngas Chemicals Storage Materials Transport Fibres Lignin Residual Food Soil conditioner Feed Fertiliser Rest Reactor Org. waste Biogas **Syngas**

Feeding experiments with green protein to pigs, cows (also fibres), broilers & egg layers

Business evaluation of decentralized green biorefineries in Denmark

Economic assumptions:

• Biorefinery CAPEX: 3.36 mio EUR

• Depreciation time: 15 year

• 5% Interest rate , 5% Maintenance

• Grass price

Organic: 0.15 EUR/kg

Conventional: 0.13 EUR/kg

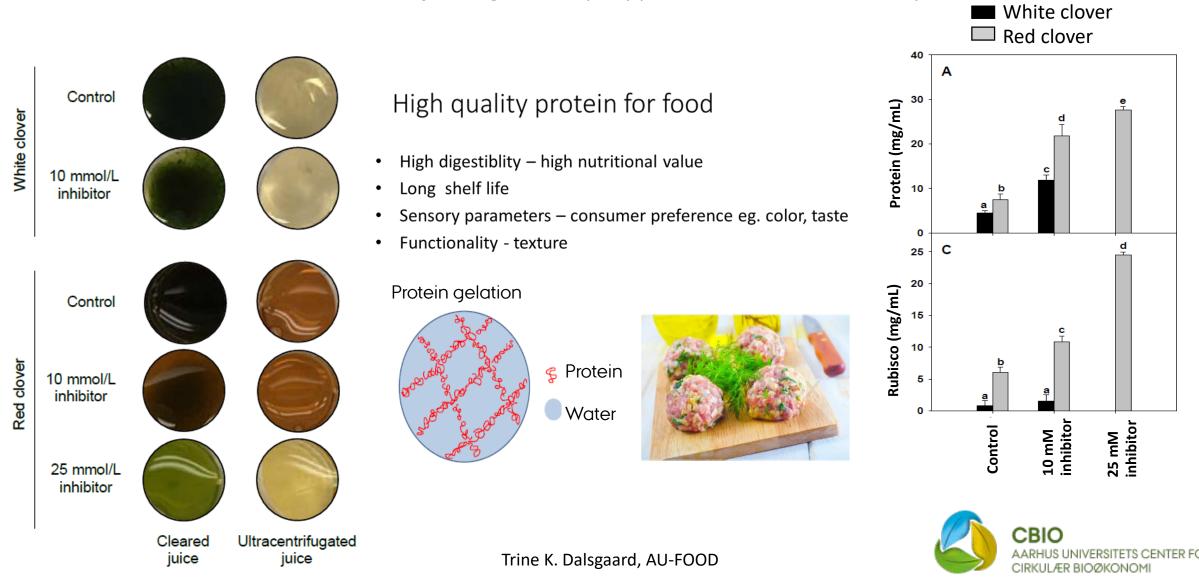
Protein price

• Organic: 0.67 EUR/kg

Conventional: 0.34 EUR/kg

• Fiber pulp price

• Identical to grass price


 Residue juice is not given any cost or value - It is used for internal energy production at the biogas plant.

Economy		
, in the second second	Scenario	
	Organic	Conventional
	Mio. EUR	Mio. EUR
Income		
Protein concentrate +	4.70	3.25
Fibre		
Expenses		
Grass	3.33	2.90
Energy and salary	0.19	0.19
Maintenance	0.17	0.17
Depreciation and	0.32	0.32
interest		
Result	0.66	-0.34

Source: Morten Ambye-Jensen

Green protein for food purposes will increase product value However, still R&D and Novel Food regulation to tackle

Reduction of indigenous polyphenol oxdiase activity

GREEN BIOREFINERY CAN DISRUPT AGRICULTURE FROM ITS LOCK-IN BECAUSE

- Grass can approx. double productivity while nitrate leaching, pesticide use, GHG emission & soil erosion is reduced
- Extracting the high protein content in grass & legumes while the fibre is fed to dairy cattle creates a new market for grass
- The business case for organic production is positive
- It may be a cheaper way to fulfil e.g. the Water Framework Directive than existing measures often reducing productivity
- Also contributes to the EU climate policy, protein strategy etc.

Demo-plant for green biorefinery now ready to pave the way for market introduction

Supported by public funding, and Arla, Danish Crown, DLG & DLF

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862674

BIOBASED INNOVATION STUDENT CHALLENGE, EUROPE (WWW.BISC-E.EU)

JOIN THE BIOBASED INNOVATION STUDENT CHALLENGE EUROPE

Welcome on the website of the Biobased Innovation Student Challenge Europe, BISC-E. This challenge gives students the opportunity to explorer the emerging biobased field. A national competition is organized in several countries, followed by a european final for the winners.

WE CAN RECYCLE ALL RESOURCES ON MARS - WHY NOT DO IT ON EARTH INSTEAD - MUCH CHEAPER!

JONATHAN D. TRENT, NASA & "THE OMEGA GLOBAL INITIATIVE"

SEE MORE ON: WWW.CBIO.AU.DK

