Protein Quality Dynamics During Wilting and Preservation of Grass-Legume Forage

Elisabet Nadeau¹, Wolfram Richardt², Michael Murphy³ and Horst Auerbach⁴

¹Swedish University of Agricultural Sciences, Skara, Sweden
²LKS mbH, Germany
³Lantmännen Feeds R & D, Sweden
⁴ADDCON EUROPE GmbH, Germany

XVI International Silage Conference, Hämeenlinna, Finland, July 2-4, 2012
Introduction

- The crude protein of plants can be divided into following fractions (CNCPS; Sniffens et al., 1992; Licitra et al., 1996):
 - A: Nonprotein nitrogen
 - B: True protein
 - B1: Soluble protein
 - B2: Neutral detergent soluble protein
 - B3: Acid detergent soluble protein
 - C: Acid detergent insoluble protein
- The rumen undegraded dietary protein (UDP) at a defined rumen passage rate can be calculated from the fibre and CP fractions (Kirchhof et al., 2006, Kirchhof, 2007, Edmunds et al., 2012 (In press)).
Introduction

- The CP fractions change during wilting and preservation.
- Limited information exists
 - on the effects of moderate wilting during good conditions on the CP fractions and UDP of forage before ensiling.
 - on the effects of storage time and additives on the CP fractions and UDP of silage.
Objective

• To evaluate the effects of
 – wilting
 – ensiling
 – silage additive
 on the protein quality of highly digestible grass-legume forage.
Materials and Methods

Silage study at Nötcenter Viken, Falköping, Sweden

Grass (77%) – legume (23%) forage at 150 g DM/kg was mowed as a first harvest June 3, 2010 and wilted for 21 hours.
Wilted forage was chopped June 4, 2010

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DM, g/kg</td>
<td>350</td>
</tr>
<tr>
<td>CP, g/kg DM</td>
<td>149</td>
</tr>
<tr>
<td>NDF, g/kg DM</td>
<td>375</td>
</tr>
<tr>
<td>WSC, g/kg DM</td>
<td>215</td>
</tr>
<tr>
<td>OMD, g/kg</td>
<td>917</td>
</tr>
</tbody>
</table>

Unwilted and wilted forages were sampled (n = 3).
Harvest

Precision-chopped forage – Claas jaguar chopper

Additives applied to forage on the chopper:
Homofermentative LAB KOFASIL LIFE 400 000 cfu/g f.m.

Salt-based additive
KOFASIL ULTRA K, 2 l/ton f.m.
(ADDCON EUROPE GmbH)

UNTREATED CONTROL SILAGE
Ensiling in mini silos

- 3 silos/treatment were opened after 5, 10, 30 och 125 days.
- Silages were analysed for fermentation pattern and protein quality.
Chemical Crude Protein Fractions (Licitra et al., 1996)

<table>
<thead>
<tr>
<th>Crude protein</th>
<th>Non-protein N (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True protein</td>
<td></td>
</tr>
<tr>
<td>Buffer insoluble protein</td>
<td>Buffer-soluble protein (B1)</td>
</tr>
<tr>
<td>ND-insoluble protein</td>
<td>ND-soluble protein (B2)</td>
</tr>
<tr>
<td>AD-insoluble protein (C)</td>
<td>AD-soluble protein (B3)</td>
</tr>
</tbody>
</table>

UDP at a specific rumen passage rate can be calculated based on these CP fractions and fibre contents (Kirchhof et al., 2006; Edmunds et al, 2012 (In press)).
Fermentation characteristics

Statistical comparisons within storage time, n = 3.
Protein quality changes in forage during wilting for 21 hours and ensiling for 125 days

UDP8, g/kg CP (n = 3)

UNWILTED FORAGE

WILTED FORAGE

CONTROL SILAGE

UDP8, g/kg CP (n = 3)

292b

350a

210c

P < 0.0001

a

b

b

b

a

a

b

b

800

600

400

200

0

ADIP (C)

AD-soluble protein (B3)

ND-soluble protein (B2)

True soluble protein (B1)

NPN (A)
Protein quality changes in silage

Values are means over additive treatments (n=9)
No effects of additives at 5, 10 and 30 days of storage.

$P_{\text{time}} < 0.0001$

BIP (g/kg DM)
NDIP (g/kg DM)
ADIP (g/kg DM)

ND-soluble protein B2
AD-soluble protein B3
Protein quality changes in silage

Values are means over additive treatments (n= 9)
No effects of additives at 5, 10 and 30 days of storage.

$P_{\text{time}} < 0.05$
Additive effects on protein quality of silage after 125 days of storage

UDP8, g/kg CP (n = 3)

<table>
<thead>
<tr>
<th></th>
<th>CONTROL SILAGE</th>
<th>KOFASIL LIFE</th>
<th>KOFASIL ULTRA K</th>
</tr>
</thead>
<tbody>
<tr>
<td>210(b)</td>
<td>233(a)</td>
<td>232(a)</td>
<td>$P = 0.060$</td>
</tr>
</tbody>
</table>

- ADIP (C)
- AD-soluble protein (B3)
- ND-soluble protein (B2)
- True soluble protein (B1)
- NPN (A)
Effect of silage UDP on a dairy cow diet containing 12 kg DM silage and 9 kg DM concentrate

<table>
<thead>
<tr>
<th></th>
<th>CONTROL silage, 210 g UDP/kg CP</th>
<th>KOFASIL LIFE or KOFASIL ULTRA K treated silage, 232 g UDP/kg CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP, g/kg DM</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>RDP, g/kg DM</td>
<td>112</td>
<td>110</td>
</tr>
<tr>
<td>UDP (RUP), g/kg DM</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>NDF, g/kg DM</td>
<td>340</td>
<td>340</td>
</tr>
<tr>
<td>Starch, g/kg DM</td>
<td>144</td>
<td>144</td>
</tr>
</tbody>
</table>

The increase in diet UDP corresponds to ca 0.5 kg DM concentrate per cow and day.
Conclusions

• Moderate wilting to ca 350 g DM/kg during good weather conditions improved forage protein quality.

• NPN increased rapidly during early fermentation while the AD-soluble protein increased later during fermentation and storage.

• The decrease in UDP during silage fermentation occurred early.
Conclusions

• Effects of additives on protein quality occurred late during silage storage (>30 d).

• KOFASIL LIFE and KOFASIL ULTRA K decreased NPN production and tended to maintain more of the ND-soluble protein in the wilted forage compared to the control silage, resulting in increased silage UDP from 210 to 232 g/kg CP.

• By increasing the UDP from silage, more of the silage protein can be used in cattle diets resulting in savings of concentrate.
Acknowledgements

This project was funded by Agroväst, ADDCON EUROPE GmbH, VL-foundation, Lantmännen R & D, AIC and SLU.

Thank you!